Genesis 1:1 - the Parametric Equations - and Beyond

Addendum ${ }^{(1)}$ to THE ULTIMATE ASSERTION ${ }^{(2)}$ and THE SECOND EDGE ${ }^{(3)}$

Abstract

The numbers that arise from a fair alternative reading of the Bible's first 8 Hebrew words are neither random nor independent - as might well be supposed. Rather, they convey the impression of having been purposely selected as a coherent and ordered set. This strongly suggests that their Author was, long ago, engaged in preparing an impregnable defence for the truth of His Word, the Judeo-Christian Scriptures, in a time of intense unbelief.

Preamble

This paper extends claims already made in the author's earlier writings, viz. that the numerical structure represented by the opening words of the Hebrew Bible has been purposefully and intensely seeded with the hallmarks of Supernatural Intelligent Design; it is, in fact, nothing less than a complex cryptogram and standing miracle ${ }^{(4)}$.

As before, we begin by taking a closer look at the object in question: here are the first eight words of the Judeo-Christian Scriptures as they feature in the original Hebrew:

Figure 1
Their fair conversion to whole numbers is based upon the system of alphabetic numeration ${ }^{(5)}$ introduced into Jewish society circa 200 BC . In our example, proceeding from right to left, we read the whole of the first verse (Genesis $1: 1$) and the first word of the second. Letter values are marked above the text and their sums, the word values, below. These are referred to as the 'Characteristic Values' (CVs) of the Hebrew words.
[Observe that in stripping down words to fixed numbers precision is being substituted for the clouding nuances of language and interpretation. If there is a message in the numbers, it is therefore based upon mathematical certainty - but then, only if the numbers themselves prove to be meaningful. Clearly, one's natural reaction would be to regard them as little more than fortuitous adhesions to the text, and hence devoid of interest. However, the Bible declares its words to be divinely inspired ${ }^{(6)}$ - a claim that cannot be lightly dismissed; we must allow for the possibility that the numbers are somehow predetermined and intended to accomplish some significant purpose. The analyses which follow strongly confirm this.]
The datasets before us may be summarised thus:

$$
\begin{gathered}
\mathbf{G}=\{913,203,86,401,395,407,296\}-\text { the first verse } \\
\mathbf{G}^{+}=\{913,203,86,401,395,407,296,302\}-\text { the first eight words }
\end{gathered}
$$

and their sums:

$$
\begin{aligned}
& \sum \mathrm{G}=2701=73^{\text {rd }} \text { triangular number } \\
& \sum \mathrm{G}^{+}=3003=77^{\text {th }} \text { triangular number }
\end{aligned}
$$

Observe:

1. Both \mathbf{G} (Genesis $1: 1$) and \mathbf{G}^{+}are large triangular numbers.
2. Their terms - the CVs - reside within the first thousand natural numbers.
3. None of these is a multiple of 3 .
4. The first term is more than double any other.
5. The sets centre around a multiple of 100 - confirming their affinity with the decimal system of numeration and suggesting the parametric equation

$$
\begin{equation*}
\mathbf{G}^{+}{ }_{i}=100 u_{i}+v_{i} \tag{i}
\end{equation*}
$$

6. Closer inspection reveals two more parametric relationships, viz.

$$
\begin{equation*}
\mathbf{G}^{+}{ }_{\mathbf{i}}=37 \mathbf{u}_{\mathrm{i}}+6 \mathrm{v}_{\mathrm{i}} \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{G}^{+}{ }_{i}=105 u_{i}+99 v_{i}+w_{i}-------(i i i) \tag{iii}
\end{equation*}
$$

In each of these, the parameters u, v and w represent whole numbers. Such relationships are compelling evidence that the sets are cohesive.

The Derivation of the Parametric Equations

Concerning (i):

Clearly, u_{i} represents the number of hundreds in each CV; and v_{i}, its distance from the nearest 100 . G^{+}thus encompasses 28% of numbers in the first thousand.

Figure 2

Here is the table of values accompanying this property:

$$
\mathbf{G}^{+}=100 u_{i}+v_{i}
$$

\mathbf{i}	1	2	3	4	5	6	7	8
$\mathbf{G}_{\mathbf{i}}^{+}$	913	203	86	401	395	407	296	302
$\mathbf{u}_{\mathbf{i}}$	9	2	1	4	4	4	3	3
$\mathbf{v}_{\mathbf{i}}$	13	3	-14	1	-5	7	-4	2

Figure 3
Example:

$$
\mathbf{G}^{+}{ }_{3}=100 u_{3}+v_{3}=100-14=86
$$

Concerning (ii):

Each of the eight opening words of the Hebrew Bible may be expressed absolutely within a rectangle of square counters, of height 37 , thus:

Figure 4
As may be seen, 913 comprises 25 complete columns of 37 less 12 counters; 302,8 complete columns of 37 plus 6 counters, and so on. All deficits and surpluses are observed to be multiples of 6. With respect to 407 and 296, these are both multiples of 37 and so register neither deficit nor surplus.

Here is the table accompanying this property:

$$
\mathbf{G}^{+}=37 \mathrm{u}_{\mathrm{i}}+6 \mathrm{v}_{\mathbf{l}}
$$

\mathbf{i}	1	2	3	4	5	6	7	8
$\mathbf{G}_{\mathbf{i}}^{+}$	913	203	86	401	395	407	296	302
$\mathbf{u}_{\mathbf{i}}$	25	5	2	11	11	11	8	8
$\mathbf{v}_{\mathbf{i}}$	-2	3	2	-1	-2	0	0	1

Figure 5

Example

$$
\mathbf{G}^{+}{ }_{5}=37 \mathbf{u}_{5}+6 \mathrm{v}_{5}=37 .(11)+6 .(-2)=407-12=395
$$

[Observe here the use of the period (.) as a multiplication symbol]
Remarkably, the first 7 of Figure 4 function as pieces of a jigsaw puzzle; they fit together perfectly in two distinct ways - as depicted in Figures 6 and 7. This feature alone adds substantially to the building of an 'Intelligent Design' argument.

Observe that two complete rectangles, A and B, may be formed from pieces 1 to 5 ; clearly, each is a multiple of 37 and equal to $999 ; C$ and D are already multiples of 37 ; together, these 4 units comprise a total of $999+999+407+296=2701$ counters.

Figure 6

Similarly, these 5 pieces may be combined differently to form rectangles A^{\prime} and B^{\prime} - yielding the alternative result.

Figure 7

While not part of these constructions, it is clear that the unused $8^{\text {th }}$ piece is of the same form as the others.

These representations are also significant in demonstrating that of the 127 combinations of the terms of $\mathbf{G}, 23$ will be multiples of 37 - i.e. some 7 times more than the number expected of a random set.

Concerning (iii):

The third parametric equation concerning \mathbf{G}^{+}arises from its remarkable affinity with the metric dimensions of an abundant modern artefact - the A4 sheet of cut paper (see www.whatabeginning.com/A4Enigma.pdf). This rectangular object has the nominal dimensions $297 \mathrm{~mm} \times 210 \mathrm{~mm}$ and, outside of Canada and the US, is now the most popular medium for communicating the written word. The inception of ISO 216 - the A4 standard - dates from 1975.

Figure 8

Clearly, an A4 sheet may be divided precisely into six rectangular panels of dimension $105 \mathrm{~mm} x$ 99 mm . Surprisingly, the numbers 105 and 99 are found to relate directly to each of the final seven of \mathbf{G}^{+}, thus:

$$
\begin{gathered}
203\left(\mathbf{G}^{+}{ }_{2}\right)=105+99-1 \\
302\left(\mathbf{G}^{+}{ }_{8}\right)=203+99 \\
401\left(\mathbf{G}^{+}{ }_{4}\right)=302+99 \\
407\left(\mathbf{G}^{+}{ }_{6}\right)=302+105 \\
296\left(\mathbf{G}^{+}\right)=401-105 \\
395\left(\mathbf{G}^{+} 5\right)=296+99 \\
86\left(\mathbf{G}^{+}{ }_{3}\right)=296-105-105
\end{gathered}
$$

Observe that each of these is one less than a multiple of 3. All 7 may therefore be accommodated within the borders of a pair of segmented A4 sheets laid side-by-side, as depicted in Figure 9.

Figure 9
Note however that the first of \mathbf{G}^{+}must be accommodated separately because 913 is two less than a multiple of 3. As may be seen (Figure 10), it is accompanied by doubles (browns) and pairs (blues) of the above CVs.

Figure 10
A third parameter w of value -1 or -2 is thus required to deal with the situation.
There can be no clearer evidence for the coherence and coordination of the elements of \mathbf{G}^{+}and the special status of its first term!

Figure 11 records the values (all small integers) of the 3 parameters u, v and w for the \mathbf{G}^{+}set

$$
\mathbf{G}^{+}{ }_{\mathbf{l}}=105 u_{i}+99 v_{i}+w_{i}
$$

\mathbf{i}	$\mathbf{G}_{\mathbf{i}}^{+}$	$\mathbf{u}_{\mathbf{i}}$	$\mathbf{v}_{\mathbf{i}}$	$\mathbf{w}_{\mathbf{i}}$
1	913	4	5	-2
2	203	1	1	-1
3	86	-2	3	-1
4	401	1	3	-1
5	395	0	4	-1
6	407	2	2	-1
7	296	0	3	-1
8	302	1	2	-1

Figure 11
Example:

$$
\mathbf{G}^{+}{ }_{2}=105 \mathrm{u}_{2}+99 \mathrm{v}_{2}+\mathrm{w}_{2}=105.1+99.1-1=203
$$

The derivation of S1 and S2

It is necessary in this case to generate two tables of values on the basis of w_{i} being either -1 or -2 . This parameter is based upon the fact that 913 , the first of the set, is two less than a multiple of 3 , whereas all the remaining terms are one less.
The \mathbf{w} values are thus best dealt with separately. So, for the moment, leaving them out, we have the temporary set \mathbf{S}^{\prime} :

		$S^{\prime}=105 u+99 v$						
		u						
		-2	-1	0	1	2	3	4
v	1	--	--	99	204	309	414	519
	2	--	93	198	303	408	513	618
	3	87	192	297	402	507	612	717
	4	186	291	396	501	606	711	816
	5	285	390	495	600	705	810	915

Figure 12
$\mathbf{S 1}$ is derived from \mathbf{S}^{\prime} by subtracting 1 from each entry, thus:

S1 = S' 1		u						
		-2	-1	0	1	2	3	4
v	1	--	--	98	203	308	413	518
	2	--	92	197	302	407	512	617
	3	86	191	296	401	506	611	716
	4	185	290	395	500	605	710	815
	5	284	389	494	599	704	809	914

Figure 13
$\mathbf{G}^{+}(2-8)$ are highlighted.
$\mathbf{S 2}$ is derived from \mathbf{S}^{\prime} by subtracting 2 from each entry:

$\mathrm{S} 2=\mathrm{S}^{\prime}-2$		u						
		-2	-1	0	1	2	3	4
v	1	--	--	97	202	307	412	517
	2	--	91	196	301	406	511	616
	3	85	190	295	400	505	610	715
	4	184	289	394	499	604	709	814
	5	283	388	493	598	703	808	913

Figure 14
$\mathbf{G}^{\mathbf{+}}{ }_{\mathbf{1}}$ is highlighted.

Finding a General Solution

Our initial quest will be to determine the set of numbers \mathbf{S} in the range 1-1000 of which \mathbf{G}^{+}is a subset. This will involve a series of 'scalpings' as each of the observed features is considered and applied. Here again is the table of variables accompanying equation (i):

$$
\mathrm{G}^{+}{ }_{\mathrm{i}}=100 \mathrm{u}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}
$$

\mathbf{i}	1	2	3	4	5	6	7	8
$\mathbf{G}_{\mathbf{i}}^{+}$	913	203	86	401	395	407	296	302
$\mathbf{u}_{\mathbf{i}}$	9	2	1	4	4	4	3	3
$\mathbf{v}_{\mathbf{i}}$	13	3	-14	1	-5	7	-4	2

Figure $15 / 3^{(7)}$

The following table reports all values within the range 1-1000 that meet the requirements of equation (i), viz. $\mathbf{G}^{+} \boldsymbol{I}=100 u_{i}+v_{i}-$ observe that the \mathbf{G}^{+}components are highlighted.

Base	$\mathrm{G}^{+}(\bmod 100)$																											
	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
000	--	--		--	--	--	--	--	--	--	--	--	--	--	--	1	2	3	4	5	6	7	8	9	10	11	12	13
100	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113
200	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213
300	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313
400	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413
500	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513
600	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613
700	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713
800	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813
900	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913
1000	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000	0	--	--	--	--	--	--	--	--	--	--	--	--

Figure 16

Now, because of the fact that none of \mathbf{G}^{+}is a multiple of 3 , we may remove such multiples from the table, thus:

Base Point	$\mathrm{G}^{+}(\mathrm{mod} 100)$																											
	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
000	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	2		4	5		7	8		10	11		13
100	86		88	89		91	92		94	95		97	98		100	101		103	104		106	107		109	110		112	113
200		187	188		190	191		193	194		196	197		199	200		202	203		205	206		208	209		211	212	
300	286	287		289	290		292	293		295	296		298	299		301	302		304	305		307	308		310	311		313
400	386		388	389		391	392		394	395		397	398		400	401		403	404		406	407		409	410		412	413
500		487	488		490	491		493	494		496	497		499	500		502	503		505	506		508	509		511	512	
600	586	587		589	590		592	593		595	596		598	599		601	602		604	605		607	608		610	611		613
700	686		688	689		691	692		694	695		697	698		700	701		703	704		706	707		709	710		712	713
800		787	788		790	791		793	794		796	797		799	800		802	803		805	806		808	809		811	812	
900	886	887		889	890		892	893		895	896		898	899		901	902		904	905		907	908		910	911		913
1000	986		988	989		991	992		994	995		997	998		1000	--	--	--	--	--	--	--	--	--	--	--	--	--

Figure 17
The next task is to remove all terms which are not of the form required by equation (ii), viz.

$$
\mathbf{G}^{+}{ }_{\mathbf{I}}=37 \mathrm{u}_{\mathrm{i}}+6 \mathrm{v}_{\mathrm{l}}
$$

\mathbf{i}	1	2	3	4	5	6	7	8
$\mathbf{G}_{\mathbf{i}}^{+}$	913	203	86	401	395	407	296	302
$\mathbf{u}_{\mathbf{i}}$	25	5	2	11	11	11	8	8
$\mathbf{v}_{\mathbf{i}}$	-2	3	2	-1	-2	0	0	1

Figure 18/5

Here is the reduced table (Figure 19):

Figure 19

With regard to equation (iii), we need to apply $\mathbf{S 1}$ and strike out those entries which are not included, thus:

S1 $=$ S' - 1		u						
		-2	-1	0	1	2	3	4
V	1	--	--	98	203	308	413	518
	2	--	92	197	302	407	512	617
	3	86	191	296	401	506	611	716
	4	185	290	395	500	605	710	815
	5	284	389	494	599	704	809	914

Figure 20/13

Here is the set $\mathbf{G 1}$ which captures all analogues of $\mathbf{G}^{+}(\mathrm{i}=2$ to 8$)$ over the integer range 1 to 1000 :

Figure 21

And now, applying $\mathbf{S 2}$ to the same, we have the set $\mathbf{G} \mathbf{2}$ which captures all analogues of $\mathbf{G}^{+}(\mathbf{i}=\mathbf{1})$ over the integer range 1 to 1000 :

$S 2=S^{\prime}-2$		u						
		-2	-1	0	1	2	3	4
v	1	--	--	97	202	307	412	517
	2	--	91	196	301	406	511	616
	3	85	190	295	400	505	610	715
	4	184	289	394	499	604	709	814
	5	283	388	493	598	703	808	913

Figure 22/14

Base Point	$\mathrm{G}^{+}(\mathrm{mod} 100)$																												
	-14 -13	$13-1$	-12	-11	-10	-9			-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
000																													
100																													
200																													
300																													
400																													
500																													
600																													
700																													
800																													
900																													
1000																													

Figure 23

Observe that the CVs in these two sets G1 and G2 represent all the numbers over the range 1 1000 which satisfy the requirements of the 3 parametric equations and the further condition that none is a multiple of 3 .

Further Analysis

The outputs of the foregoing analyses are the reduced data sets $\mathbf{G 1}$ and $\mathbf{G 2}$ which contain \mathbf{G}^{+}and all its analogues

```
G1 = {86 92 191 197 203 290 296 302 308 389 395 401 407 413 500 506 512 611}
    G2 = {388 493 499 598 604 610 703 709 808 913}
The terms of the first 8 CVs of Genesis 1 (i.e. G+) are marked in red.
```

Observe that - apart from 913 - all the terms of $\mathbf{G 2}$ are the sums of pairs drawn from the red components of G1, thus:

$$
\begin{aligned}
388 & =86+302 ; 493=86+407 ; 499
\end{aligned}=203+296 ; 598=296+302 ; 604=203+401 ; ~ 子 203=203+407 ; 703=401+302=407+296 ; 709=407+302 ; 808=401+407
$$

This fact alone strongly suggests the coherency of \mathbf{G}^{+}; the situation is probably unique among the combination of 7 which might be constructed from G1, with 913 occupying the first position.
[With these reduced sets, G1 and G2, in mind, the author had hoped that further Visual Basic analysis would establish \mathbf{G} as unique among the many $7-\mathrm{CV}$ sets of 2701 that could be constructed from $\mathbf{G 1}$ and G2. However, it was not to be - the task was burdened by the need to make many assumptions, and would thus fail to lead to a convincing outcome. The author therefore had to look elsewhere for further evidence of the Creator's miraculous choice. It occurred to him that more could be said to justify the choice of particular CVs.]

So, to place the matter beyond all reasonable doubt, more can be said about certain of the individual components of \mathbf{G} and \mathbf{G}^{+}and the position they occupy within the verse, thus:

Concerning 913:

It appears logical that this - standing out as the largest, structurally different from the rest, and central to the tessellations described in the first addendum - should be honoured in this way.

Concerning 401:

This derives from the Aleph-Tav - the little word formed from the first and last characters of the Hebrew alphabetic. It is a most prolific word - occurring some $2251^{(8)}$ times in the text of the Jewish Bible. Interestingly, it is the equivalent of the Alpha/Omega of the New Testament- which symbol Jesus claimed as his own (Revelation 1:8, 1:11, 22:13).

Concerning 407 and 296:

These multiples of 37 total 703 - representing the triangle which fits perfectly within the verse triangle 2701 and the hexagon 1801 (see Figure 24) - have a significant part to play in making possible the presence of 2368 among the factors of the 21-digit concatenation of \mathbf{G} :

$$
9132030861395407296=2368 \times 385643195270859547
$$

This strongly suggests that \mathbf{G} is a carefully ordered set, and this is confirmed in later observations. Thus, remarkably, the Creator's Name is found again in the numerical expression of
"In the beginning God created the heaven and the earth."
But there is more: because 296 - the second component - is factor of both Name and Title of the Creator, thus:

$$
\text { Jesus }=888=3 \times 296
$$

$$
\begin{gathered}
\text { Christ }=1480=5 \times 296 \\
\text { Creator }=\text { Jesus Christ }=2368=8 \times 296^{(9)}
\end{gathered}
$$

Concerning 302：

This first CV of the second verse serves the important function of converting \mathbf{G} to \mathbf{G}^{+}－in particular， converting 2701－as－triangle（the $73^{\text {rd }}$ ）to 3003 －as－triangle（the $77^{\text {th }}$ ）；it also participates with the last 4 of \mathbf{G} in the hexagon which fits precisely within 2701－as－triangle－accommodating 703－as－triangle perfectly in the process．

Figure 24
Here we see the G－triangle of 2701 precisely inscribed by the hexagon of 1801 （the sum of the last 5 of \mathbf{G}^{+}，viz． $401+395+407+296+302=1801$ ）and this，perfectly inscribed by the triangle 703 （the sum of the last 2 of \mathbf{G} ，viz． $407+296=703$ ）．Observe here a fact which appears to be significant，viz． 302 is not included in \mathbf{G} ．It seems that we are thereby intended to understand that the miracle of these coordinated geometries reaches beyond \mathbf{G} to include the remainder of God＇s Word．
It should not escape our notice that these geometrical elements，deriving from complete sequences of the CVs，must mean that \mathbf{G}^{+}is an ordered set，i．e．the information it contains extends beyond the numbers themselves．This fact is further exemplified by the two following divisions of G ：

Division 1

Here， \mathbf{G} is divided into＇odds＇and＇evens＇：
Observe that the sum of the odd values， $913+86+395+296=1690$ ；and the sum of the
evens， 203 ＋401＋407＝ 1011

$8 \tilde{N}^{7}$	$\stackrel{\rightharpoonup}{\circ}^{6}$	$\stackrel{5}{\mathrm{D}_{0} \text { oे }}$	$\stackrel{4}{\text { 吕 }^{2}}$		$\begin{gathered} 2 \\ -\tilde{o}_{N} \end{gathered}$	$\text { 合宽 }{ }^{1}-\tilde{O}_{N}$
：Yา＊T	กN7	ロッツu゙T	IN	ロップ＊	ヘフコ	アツせx゙ワ
earth the 296	and 407	heaven the 395	401	God 86	created 203	beginning the In 913
296	407		401	86	203	913

Figure 25

Factorising these sums, we find $1690=10.169$ and $1011=3.337$. Now 169 and 337 are related geometrically; they represent the 8th numerical hexagon/star pair and tessellate, thus:

Figure 26
Note that this figure comprises 10 hexagons - each of 169 counters - and 3 hexagrams of 337; in all, a total of 2701. The figure is thus a representation of Genesis $1: 1$ and, like its triangular form, exhibits a threefold symmetry. Clearly, things needn't have happened this way. It is indeed a most remarkable addition to what is already a significant confluence of attributes. Observe also that a simple development of this figure leads to the 3 -dimensional $7^{\text {th }}$ stella octangula ${ }^{(10)}$.

Division 2

Figure 27

From these three segments, the following integrated structures arise:

1. $(A+B)+C=2701=$ the G-TRIANGLE
2. $(A+C)-B=937$; this is depicted below as the union of the inner $\left(37^{\text {th }}\right)$ triangle with a centred inverted copy of itself, thus creating the $13^{\text {th }}$ term of the hexagram (or 'star') series in which the $12^{\text {th }}$ triangle figures as a constructional element
3. $(B+C)-A=469$; this appears as the blue hexagonal core of the hexagram

Figure 28

The interplay within \mathbf{G} strongly suggests that it was designed with these beautiful coordinated geometries in mind! And the symbolic nature of the result, with 12 as the dimension of the triangular spurs of the hexagram, should not be missed.

Conclusions

It is a sobering thought that each of the billions of A4 sheets of paper that pass through the hands of people daily should bear silent witness to the Glory and Majesty of our Creator! Can there be anything more persuasive of his Divine Presence than the realisation of this? And, of course, along with that, the revelation that the opening words of his 'Maker's Manual', the Bible, are backed by such a glittering array of numerical wonders based on their cohesion, coherency and order - as has been demonstrated here. ${ }^{(11)}$

The seemingly interminable debates - God vs No-God, Creation vs Evolution, ID vs Non-ID, and so on suggest that those participating have overlooked the possibility that the Creator might, at some point, intervene to declare his presence inferentially - just as He did long ago by delivering His people from Egypt, parting the Red Sea, providing direction in a cloud by day and fire by night, and sustaining them for 40 years in an arid wilderness. Today, adopting an approach which is more in keeping with the understanding of modern man, He provides - in the very first verse of His Word - an elaborate numerical cryptogram - effectively declaring, (1) His Being and Sovereignty, (2) the Inerrancy of His Inspired Word and, (3) the Gospel of Jesus Christ and the reality of mankind's supernatural enemies. The Hebrew of Genesis $1: 1$ speaks clearly and incontrovertibly of these truths.

It is significant that the publication of this paper coincides with that of Stephen Meyer's book The Return of the God Hypothesis (see Appendix 1 for a brief survey of its contents). While we both share a passion for Truth, a distinction must be made between the nature of the respective evidences presented: whereas mine (incorporating The Second Edge and its Addenda) is unchallengeable, SM's is likely to invoke much fruitless discussion as antagonists strive to circumvent his findings. However, between us, I believe, the battle is won: JESUS really is ALIVE! The BIBLE really is TRUE!

Another view of the $\mathrm{A} 4 / \mathbf{G}^{+}$connection may be found in Appendix 2. This follows an experimental approach requiring nothing more than a metre ruler graduated in millimetres and a few sheets of A4 and A5.

Footnotes

(1) This is the second addendum to The Ultimate Assertion and The Second Edge. The first was entitled The Chain Tesselations of Genesis 1:1.
(2) Refers to the author's peer-reviewed paper The Ultimate Assertion: Evidence of Supernatural Design in the Divine Prologue (Creation Ex Nihilo Tech. J., vol.7(2), 1993, pp.184-196) - now updated and available at both Academia.org. and www.whatabeginning.com/Academia.pdf
(3) Refers to the author's book The Second Edge: A Role for Numerical Coincidence in the Pursuit of Truth (abbreviated 'SE') - this book may be freely downloaded from www.whatabeginning.com/book.pdf
(4) The term standing miracle represents a wonder that endures and is therefore ever available for inspection and analysis.
(5) SE, p. 15
(6) We read "All scripture is given by inspiration of God, and is profitable for doctrine, for reproof, for correction, for instruction in righteousness: ... (2Tm.3:16)
(7) Figure 15 is a copy of Figure 3.
(8) Quoting William Sandford from The Messianic Aleph-Tav Interlinear Scriptures, p.(iii).
(9) $\mathrm{SE}, \mathrm{pp} .60-61$
(10) SE, pp.45-48
(11) The Book of Genesis was written a millennium or so before Hebrew letters came to be used as numerals.

Vernon Jenkins MSc
29 ${ }^{\text {th }}$ July, 2019

vernon.jenkins@virgin.net

www.whatabeginning.com

A significant prophecy fulfilled:

"...behold, I will proceed to do a marvellous work among this people, even a marvellous work and a wonder: for the wisdom of their wise men shall perish, and the understanding of their prudent men shall be hid." (A.V. Isaiah 29:14)

Appendix 1

"The Return of the God Hypothesis" - Stephen Meyer

Meyer uses three scientific points to refute popular arguments put forward by the "New Atheists" against the existence of God:
(1) The evidence from cosmology showing that the material universe had a beginning.
(2) The evidence from physics showing that, from the beginning, the universe was being "finely tuned" to allow for the possibility of life.
(3) The evidence from biology showing that since the universe came into being large amounts of genetic information present in DNA must have arisen to make life possible.

In analysing the evidence from three fields, Meyer reveals how the data support not just the existence of an intelligent designer of some kind - but the existence of a theistic creator.

Appendix 2

An Experiment - Another approach to the details of the A4/G ${ }^{+}$connection.
The accompanying table details the nominal paper sizes (in millimetres) determined by the current international paper standard ISO 216. AO has an area of I square metre.

ISO 216 A-Series Formats		
A0	841	$\times 1189$
A1	594	$\times 841$
A2	420	$\times 594$
A3	297	$\times 420$
A4	210	x 297
A5	148	x 210
A6	105	x 148
A7		x 105
A8	52	x 74
A9	37	x 52
A10	26	x 37

Observe the dimensions of A4 (210×297) and A5 (148×210). Clearly, in halving A4 we will have lost 1 mm ; in other words, to reconstitute A4 from a pair of A5 sheets the result (A4', say) will have the dimensions $210 \times \underline{296}$.

The following diagram shows a number of standard A4 sheets - some folded - and one A4' sheet, folded and coloured, in contact with a metre ruler graduated in millimetres. Observe the appearance of \mathbf{G}^{+}and $703(=407+296=401+302)$ at strategic positions along the ruler.

Note the absence of one CV from our construction; it is 407, i.e. $302+105$. To put this matter right, we repeat the above diagram but with the rightmost sheet of A4 rotated clockwise by 90 degrees its bottom edge aligned with the 302 mm mark on the ruler.

